
 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

COAR Notify

Impact on the repository, and tools to
help you

Richard Jones

richard@cottagelabs.com

Founder, Cottage Labs

mailto:richard@cottagelabs.com

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Who am I and what is this?

Cottage Labs: make the most of your data

CONTEXT

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Cottage Labs involvement in COAR Notify

Cottage Labs is working with COAR on the following developments related to Notify:

● Implementing common tooling across multiple programming languages
● Implementing COAR Notify as a native part of InvenioRDM and Zenodo
● Implementing COAR Notify as a package for Samvera Hyrax

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Who am I and what is this?

Cottage Labs: make the most of your data

COMMON
TOOLING

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

The Common Libraries

1990

We are implementing common libraries in the following languages:

● Python
● PHP
● Ruby
● JavaScript

If you are using one of these languages and want to support COAR Notify, we strongly
encourage you to take a look!

Each one provides:

● Model implementation of all Notify pattern objects (the message formats)
● A client for creating and sending notifications
● A server interface for easy integration with your application on the server side

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Making and sending a notification

1990

announcement = AnnounceReview()

actor = NotifyActor()
actor.id = "https://cottagelabs.com/"
actor.name = "My Review Service"

obj = NotifyObject()
obj.type = ActivityStreamsTypes.DOCUMENT
obj.cite_as = "https://dx.doi.org/10.12345/6789"

origin = NotifyService()
origin.id = "https://cottagelabs.com/"
origin.inbox = "https://cottagelabs.com/inbox"

target = NotifyService()
target.id = "https://example.com/"
target.inbox = "https://example.com/inbox"

announcement.actor = actor
announcement.object = obj
announcement.origin = origin
announcement.target = target

client = COARNotifyClient()
response = client.send(announcement, target.inbox)

Let’s saw we want to announce a
review to an external inbox

1. Create an AnnounceReview
object

2. Populate it with
information about:
a. Us - the actor
b. The review - the object
c. Our service - origin

inbox
d. Your service - target

inbox
3. Send the notification to the

target inbox

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Receiving and processing a notification

1990

@app.route("/inbox", methods=["POST"])
def inbox():

notification = request.json
server = COARNotifyServer(

COARNotifyServiceImpl()
)

try:
 result = server.receive(notification)

except COARNotifyServerError as e:
 return make_response(

e.message,
e.status
)

resp = make_response()
resp.status_code = result.status
if result.status == result.CREATED:

 resp.headers["Location"] = result.location
return resp

Let’s saw we want to add an
inbox to our Flask application

1. Create a URL route
2. Read the Notification JSON

from the web framework
3. Create a server instance

which wraps our
implementation

4. Pass the raw JSON to the
server and get back a result

5. Send the user an HTTP
response

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Who am I and what is this?

Cottage Labs: make the most of your data

REPOSITORY
IMPLICATIONS

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Implication: Authentication
COAR Notify DOES NOT specify authentication requirements.

Why would we want to authenticate?

● An Inbox with no access control is a security risk and a DoS vector
● We want to be sure that messages coming from external services are from who they say

they are, so we can act on them with confidence

Why not IP whitelisting?

● It’s a bit more inflexible, and will break if IPs are changed
● It can’t so easily be managed by the repository administrator

Authentication has consequences for external services, which must have user accounts and
send authentication credentials compatible with our system’s authentication methods.

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Implication: Unsolicited Notifications
Even if we authenticate external systems, we must still deal with the possibility of receiving
unsolicited or spam notifications. This is because:

● The notifications from the external system may not be relevant to us
● The external system itself may have been compromised, and we are now dependent on

their security

As such the repository requires tools such as:

● A full admin view and management suite for notifications received
● The ability to suspend the receipt and/or processing of notifications by source or other

criteria
● The ability to roll-back the consequences on the system of actioning an unwanted

notification

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Implication: Automated processing
Some early COAR Notify implementations have focused on receiving notifications and
enabling human actors to process the consequences.

Our model relies on an architecture which can process notifications automatically

Endorsements

Reviews

Presentation
UI

Incoming
notifications

Inbox

Notification
store

Async
Processor

Internal
representation

Metadata
record

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Implication: Oversight of consequences
When a notification is processed, this has implications for how the repository objects are
presented.

1. Admins will want to be able to control how entries such as Endorsements and Reviews
are presented. What to do if there is an error in the review?

2. Admins may want to augment Notify-sourced content with other content.
Endorsements and Reviews don’t originate via Notify, there may be others which come
in via other routes

3. What will authors think about having reviews presented next to their work? What if the
reviews don’t feel fair, or cast a negative light?

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Implication: Knowing about external services
Notify does not provide a “service document” facility.

● Knowing the “inbox” URL for the repository to send notifications to is something that
exists out-of-band from the protocol.
○ Signposting is recommended by COAR Notify as the best mechanism to discover

inboxes for services.
● Some services (e.g. PCI) are going to offer multiple inboxes to support different review

communities.

The repository will need to manage this information, along with any authentication
credentials, and be able to present this to users who may be triggering notifications (e.g.
asking for Review from a specific review community).

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Who am I and what is this?

Cottage Labs: make the most of your data

IMPLEMENTATION

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

The PCI review workflow

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

The project split

Phase 1
Phase 2

1 - receive and show
endorsements

2 - request a review

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

InvenioRDM Solution

Accounts
System

Web
Framework

Data Store

Asynchronous
Jobs

Metadata
Model

External
Review Service

Registry
Inbox

Endorsement
and Review
Processing

Existing Invenio Infrastructure

Added by the project

Key

UI
Framework

Endorsement
display and

review request

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Review Service Registry

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Inbox

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Endorsement display and review request

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Who am I and what is this?

Cottage Labs: make the most of your data

CONCLUSION

 COTTAGE LABS: MAKE THE MOST OF YOUR DATA

Conclusion
● Notify provides a well defined standard way to support many cross-system interactions,

including support for the PRC publishing model
● Notify alone is not sufficient to enable this; the repository platforms and other scholarly

systems need to provide well developed support, with feature-level implications
● Workflows between systems are open, and some non-formal standardisation will

probably emerge (or will need to) to enable quicker integrations
○ Be clear workflows are not part of the spec
○ Review services are already implementing similar workflows
○ Documenting community conventions around the standard

